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Introduction to Hardy Spaces
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Basic material from the theory of Hardy spaces is presented. The principle of positive
energy representations is used as motivation to introduce these spaces.
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1. THE PRINCIPLE OF POSITIVE ENERGY REPRESENTATIONS

We consider only the two simplest cases.

Case 1. The unit sphereS1 as the rotation groupT. In the chiral conformal field
theory the rotations are symmetries. After the exceptionality of the point “infinity”
of the light line is removed then it is topologically a sphere. The Irrep’s of the
rotation group are the characters

ζ → ζ n, n ∈ Z,

and a strongly continuous unitary representationU (T) on a Hilbert spaceH can
be decomposed as

U (ζ ) =
∑
n∈Z

ζ nEn,

where theEn are the isotypical projections for the labeln. These labels are usually
interpreted as “energy levels.”

Case 2. The real lineR considered as (time) translation group. The Irrep’s are
the characters

a→ e−iap, p ∈ R,
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labeled by points ofR, usually interpreted as energy values. A strongly continuous
representation onH can be decomposed as

U (a) =
∫
R

e−iapE(dp),

where E(·) is a spectral measure onH.
The so-called positive energy representations are of special interest, physi-

cally as well as mathematically.
In Case 1, a representation is calledpositiveif

En = 0 for n < 0, i.e., U (ζ ) =
∞∑

n=0

ζ nEn,

i.e., there is a lowest energy, for examplen = 0 if E0 > 0.
In Case 2, the definition ofpositivityreads

E([0,∞)) = 1, i.e., U (a) =
∫ ∞

0
e−iapE(dp).

This is the usual positivity condition for the energy in mathematical models.
Now the simplest representations are the so-called regular ones which are not

positive.

Case 1. ChooseH := L2(S1). The canonical ONB is denoted byen, en(z) :=
zn, n ∈ Z. Then the functions ofH are given by Fourier series

f =
∑
n∈Z

an en,
∑
n∈Z

|an|2 < ∞.

The regular representation is defined by

(U (ζ ) f )(z) := f (ζz).

Then

U (ζ ) =
∑
n∈Z

ζ nEn with En := (en, ·)en,

the one-dimensional projection onto the subspaceCen.

Case 2. ChooseH := L2(R). The Fourier transformation onH is denoted byF ,

(F f )(p) = f̂ (p) := (2π )−
1
2

∫
R

e−i px f (x) dx.

Then

(F−1g)(x) = (2π )−
1
2

∫
R

e−i xpg(p) dp.
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The regular representation is defined by

(U (a) f )(x) := f (x − a).

Then one obtainŝU (a) := FU (a)F−1 is a multiplication operator given by

(Û (a) f̂ )(p) = e−iap f̂ (p).

i.e., the spectral measure ofÛ (R) is given by the spectral measure of the charac-
teristic functions,

Ê((1) f )(p) = χ1(p) f (p), 1 ⊂ R.
Then the spectral measureE(·) is given by

E(1) = F−1χ1F.

It is easy to separate from the regular representation subrepresentations which are
positive.

Case 1. Choose the subspaceH2(S1) ⊂ L2(S1), calledHardy spacedefined by

H2(S1) :=
{

f ∈ L2(S1) : f =
∞∑

n=0

an en

}
.

Then H2(S1) is invariant w.r.t. the regular representation andU (T) ⇁ H2(S1) is
positive.

Case 2. Choose the subspaceH2
+(R) ⊂ L2(R), calledHardy space, defined by

H2
+(R) := F−1χ[0,∞)L

2(R) = F−1L2(R+), R+ := [0,∞),

i.e., f ∈ H2
+(R) if f̂ (p) ≡ 0 (modulo Lebesgue measure) forp < 0. Then one has

again:H2
+(R) is invariant w.r.t. the regular representation andU (R) ⇁ H2

+(R) is
positive.

In the following several interesting properties of the Hardy spaces are pre-
sented.

2. THE UNIT SPHERE S1

Recal first that Fourier exansions of functions fromL2(S1) are “formally
similar” to Laurent expansions in analytic function theory. Therefor the functions
in H2(S1) seem to be the “analytic elements” ofL2. More precisely, the first
observation is the following: Let

H2(S1) 3 f =
∞∑

n=0

αn en,
∞∑

n=0

|αn|2 < ∞.
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Then the power series

∞∑
n=0

αnzn,

has a radius of convergencer ≥ 1 because

|
m∑

n=k+1

|αn| · |z|n| ≤
(

m∑
n=k+1

|αn|2
) 1

2

·
(

m∑
n=k+1

|z|2n

) 1
2

≤ ε ·
(

1

1− |z|2
) 1

2

,

for |z| < 1 and sufficiently largek and defines therefore a holomorphic function

f (z) :=
∞∑

n=0

αnzn, |z| < 1

in the open unit discD of the complex plane (in some sensef (·) is the extension
of f into the interior). It turns out that one has a bijection

H2(S1) 3 f ↔ f (·) ∈ H2(D),

betweenH2(S1) and the setH2(D) of all holomorphic functions inD such that
the sequence of Taylor coefficients is square-summable. It should be mentioned
that

H D(D) ⊂ A2(D), (1)

whereA2(D) denotes the Hilbert space of all complex-valued functions that are
holomorphic throughoutD and square-integrable w.r.t.µ, the planar Lebesgue
measure measure inD. The scalar product is given by

( f, g) :=
∫

D
f (z)g(z)µ(dz)

and a canonical ONB is given by

en(z) :=
(

n+ 1

π

)1/2

zn, n = 0, 1, 2,. . . ,

so thatA2(D) is isomorphic to the Hilbert space of all sequences (α0, α1, α2, . . .)
with

∞∑
n=0

|αn|2
n+ 1

< ∞,

such that (1) follows.
It is easy to find a criterion for the square summability of the sequence of the

Taylor coefficients. Choose a functionφ, holomorphic inD, φ(z) :=∑∞n=0 αnzn.
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Define

φr (z) := φ(rz), 0 < r < 1, |z| = 1.

Then it is easy to see that first

φr ∈ H2(S1), 0 < r < 1,

holds and second
∞∑

n=0

|αn|2 < ∞ iff sup0<r< 1‖φ‖ < ∞.

The bijection ofH2(S1) andH2(D) given by the “extension off into the interior”
raises the question to the inverse problem: How can one determinef from f (·)?
The solution is simple:

Given f (·) define

fr (z) := f (rz), 0 < r < 1, |z| = 1.

Then obviously

fr ∈ H2(S1), 0 < r < 1,

and the assertion is that

f = s-limr→1 fr ,

in the sense of convergence in the norm of the Hilbert spaceH2(S1). The corre-
sponding argument is simple: Letf =∑∞n=0 αnen. Then fr =

∑∞
n=0 αnr nen and

‖ f − fr ‖2 =
∞∑

n=0

|αn|2(1− r n)2 ≤
k∑

n=0

|αn|2(1− r n)2+
∞∑

n=k+1

|αn|2,

which implies the assertion. Moreover,

‖ f ‖ = limr→1‖ fr ‖ = sup0<r< 1‖ fr ‖
follows.

3. THE REAL LINE R

Let f ∈ H2
+(R) = F−1L2(R+), i.e.,

f (x) = (2π )−1/2
∫ ∞

0
eixp f̂ (p) dp, f̂ (p) = 0, p < 0.
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Obviously, f can be analytically continued into the upper half plane. Put
z= x + iy and define

f (z) := (2π )−1/2
∫ ∞

0
ei (x+iy)p f̂ (p) dp= (2π )−1/2

∫ ∞
0

eixp · e−yp f̂ (p) dp.

Then

f is holomorphic forLz > 0 (2)

and

f (· + iy) ∈ L2(R), (3)

because its Fourier transformp→ e−yp f̂ (p) is anL2-function. Parseval’s equation
gives

∞ >
∫
R
| f (x + iy)|2 dx =

∫ ∞
0

e−2yp| f̂ (p)|2 dp, y > 0.

Hence

supy> 0

∫
R
| f (x + iy)|2 dx < ∞ (4)

follows. Moreover,f appears as the boundary value for the functionf (· + iy for
y→+0 (in the sense of norm convergence inL2(R)).

Surprisingly, the properties (2), (3), (4) characterizeH2
+(R) completely. This

is the content of the famous theorem of Paley/Wiener (see, Raymond and Paley,
1934). A proof can also be found in the textbook of Yosida (1971).

Theorem (Paley/Wiener). Let f(·) be a holomorphic function in the upper half
plane. Further let f(· + iy) ∈ L2(R) for each fixed y >0, z= x + iy, and

supy> 0

∫
R
| f (x + iy)|2 dx < ∞.

Then

f ∈ H2
+(R)

follows.

The strategy of the proof is to show first thatf (· + iy) is a Cauchy sequence
for y→+0 w.r.t. theL2-norm. Thus there is a limit function

L2(R) 3 f (· + i 0)= s-limy→+0 f (· + iy),

i.e.,

limy→+0

∫
R
| f (x + iy)− f (x + i 0)|2 dx = 0.



P1: JLS

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473597 November 11, 2003 23:59 Style file version May 30th, 2002

Introduction to Hardy Spaces 2219

Second, it turns out that the Fourier transform

f̂ +0 := F f (· + i 0) ∈ L2(R)

vanishes on the negative half line, so that

f (z) = (2π )−1/2
∫ ∞

0
eizp f̂ +0(p) dp.

Interestingly enough, an elementf ∈ H2
+(R) is uniquely determined by its

projection onto an arbitrary open interval (a, b) ⊂ R, wherea = −∞, b < ∞ and
−∞ < a, b = ∞ are allowed. For example, the case (0,∞), the positive half line,
is often used in applications.

Theorem. Let f ∈ H2
+ (R) and f(x + i 0)= 0 a.e. for x > 0. Then f(z) = 0 for

all z from the upper half plane.

The proof uses Cauchy’s integral formula

f (z) = 1

2π i

∫
C

f (ζ )

ζ − z
dζ, Lz > 0,

whereC is a positively oriented rectangular path andz is contained in its interior.
Then, by standard limit processes (e.g., see Yosida, 1971) one gets

f (z) = 1

2π i

∫ ∞
−∞

f (λ+ i 0)

λ− z
dλ, Lz > 0.

On the other hand, one has∫ ∞
−∞

f (λ+ i 0)

λ− z
dλ = 0, Lz < 0.

Now, if (x + i 0)= 0 a.e. forx > 0, the integral

1

2π i

∫ 0

−∞

f (λ+ i 0)

λ− z
dλ

defines a function ofzwhich is holomorphic in the regionC\(−∞, 0]. This implies
immediately f (z) = 0 for Lz > 0.

4. HILBERT TRANSFORM

A beautiful application of this theorem concerns the so-called Hilbert trans-
form. Start with a so-called Cauchy integral

f (z) := 1

iπ

∫
R

1

λ− z
φ(λ) dλ, φ ∈ L2(R), Lz > 0.
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Define

fε(x) := f (x + i ε) = − 1

iπ

∫
R

1

x + i ε − λφ(λ) dλ.

Then one hasfε ∈ L2(R) for all ε > 0. Note that

fε = − 1

iπ

(
1

· + i ε
∗ φ
)
.

Therefore, according to the convolution theorem,

f̂ ε(p) = F(Fε)(p) = − 1

iπ
(2π )1/2F

(
1

· + i ε

)
(p) · F(φ)(p)

= − 1

iπ
(2π )1/2(−(2π )1/2 i e−εpχ[0,∞)(p))φ̂(p)

= 2χ[0,∞)(p) e−εφ̂(p),

hence

‖ f̂ ε‖L2 ≤ 2‖φ‖L2, ε > 0,

follows, i.e., fεH2
+(R). Therefore, according to the Paley/Wiener theorem, the limit

function exists

f+0 := s-limε→+0 fε .

Now f+0 can be calculated explicity. One hasf (x + i ε) = gε(x)+ hε(x), where

gε(x) = − 1

iπ

∫
R

x − λ
(x − λ)2+ ε2

φ(λ) dλ,

hε(x) = ε

π

∫
R

1

(x − λ)2+ ε2
φ(λ) dλ

and finally

f+0(x) = (Hφ)(x)+ φ(x),

where

(Hφ)(x) := 1

iπ

∫
R

φ(λ)

λ− x
dλ (Cauchy’s main value)

is the Hilbert transform. Hence

2χ[0,∞(p)φ̂(p) = (F f+0)(p) = F(H (φ))(p)+ φ̂(p),

and

F(H (φ))(p) = (2χ[0,∞(p)− 1)φ̂(p) = sgnp · φ̂(p),
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follow and this means

((F H F−1)φ̂(p) = sgnp · φ̂(p),

so thatH is self-adjoint and idempotent,H = H∗, H2 = 1.

5. RESOLVENT LIMITS

A further application of Hardy spaces is concerned with the problem of the
existence of limitsε → 0 for resolvents

R(z) := (z1− H )−1, Lz 6= 0,

of a self-adjoint operatorH = ∫R λE(dλ) on a Hilbert spaceH , where
z= x + i ε. More precisely, one studies matrix elements (u, R(z)v), u, v ∈ H or
vector functionsAR(z) f for certain bounded operators onH and for special vec-
tors f ∈ H.

First note that it is straightforward to generalize the concept “Hardy space”:
replaceC by a Hilbert spaceH. Then the underlying Hilbert space is nowL2(R,H)
and the corresponding Hardy space is denoted byH2

+(R,H), correspondig to
L2(R+,H).

Second, replace the upper half plane by the lower half plane and the positive
real half lineR+ = [0,∞) by the negative real half lineR− = (−∞, 0]. Then for
all these generalized concepts the former arguments can be repeated and lead to
the Hardy spaceH2

−(R,H), corresponding toL2
+(R−,H). Note thatH2

+ andH2
−

are mutually orthogonal and one has the orthogonal decompositions

L2(R−,H)⊕ L2(R+,H) = L2(R,H) = H2
+(R,H)⊕ H2

−(R,H). (5)

To present the mentioned application start with the identity

i (λ+ i ε − H )−1 =
∫ ∞

0
ei ((λ+i ε)−H )x dx, ε > 0. (6)

Applying (6) on a vectorf and multiplying from the left by a bounded operator
A, then by Parseval’s equation one obtains

1

2π

∫
R
‖AR(λ+ i ε) f ‖2 dλ =

∫ ∞
0

e−2εt‖A e−i t H f ‖2 dt (7)

for all f ∈ H, and, correspondingly,

1

2π

∫
R
‖AR(λ− i ε) f ‖2 dλ =

∫ 0

−∞
e2εt‖A e−i t H f ‖2 dt. (8)

For the application of the Hardy spaces in this framework it is necessary
to restrict the consideration to the so-called absolutely continuous subspace of
H . Therefore, for convenience, we assume thatH itself is already absolutely
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continuous. This means that for eachf ∈ H, ‖ f ‖ = 1, the measure (f, E(1 f )) is
absolutely continuous w.r.t. the Lebesgue measure.

An important dense submanifoldM∞ ⊂ H is given as follows: Put

| f |∞ :=
(

ess supλ
( f, E(dλ) f )

dλ

)1/2

.

ThenM∞ is defined to consist of allf with | f |∞ < ∞.
The relations (7) and (8) are of interest in particular for Hilbert–Schmidt

operatorsA ∈ L2(H) and for vectorsf ∈M∞. Namely, the following Lemma is
true:

Lemma 3. Let A∈ L2(H) and f ∈M∞. Then∫
R
‖A e−i t H f ‖2 dt ≤ 2π‖A‖22 · | f |2∞,

where‖A‖2 denotes the Hilbert-Schmidt norm of A.

Obviously this implies

supε> 0

∫
R
‖AR(λ+ i ε) f ‖2 dλ ≤ 2π

∫ ∞
0
‖A e−i t H f ‖2 dt,

and

supε> 0

∫
R
‖AR(λ− i ε) f ‖2 dλ ≤ 2π

∫ 0

−∞
‖A e−i t H f ‖2 dt.

Therefore Paley/Wiener’s theorem is applicable and one obtains the existence of
the strong limits

s-limε→0AR(λ± i ε) f =: AR(λ± i 0) f,

and the statement on their Fourier transforms. Now recall that

1

2iπ
(R(λ− i ε)− R(λ+ i ε)) =

∫
R
δε(λ− x)E(dx),

where

δ̄ε(x) := ε

π
· 1

x2+ ε2
.

A further observation says that

AE(dλ) f

dλ
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exists almost everywhere, this function is a member ofL2(R,H) and

AE(dλ) f

dλ
= s-limε→0

∫
R
δε(λ− x)AE(dx) f.

Therefore, finally one gets

AE(dλ) f

dλ
= 1

2iπ
(AR(λ− i 0) f − AR(λ+ i 0) f ),

which is the decomposition of the left-hand side w.r.t. the decomposition (5).
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